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Necrotizing enterocolitis: It’s not all in the gut
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Abstract
Necrotizing enterocolitis is the leading cause of death due to gastrointestinal disease in

preterm neonates, affecting 5–12% of neonates born at a very-low birth weight. Necrotizing

enterocolitis can present with a slow and insidious onset, with some neonates displaying

early symptoms such as feeding intolerance. Treatment during the early stages includes

bowel rest and careful use of antibiotics, but surgery is required if pneumoperitoneum and

intestinal perforation occur. Mortality rates among neonates requiring surgery are estimated

to be 20–30%, mandating the development of non-invasive and reliable biomarkers to predict necrotizing enterocolitis before the

onset of clinical signs. Such biomarkers would allow at-risk neonates to receive maximal preventative therapies such as careful

nutritional consideration, probiotics, and increased skin-to-skin care.
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Epidemiology of necrotizing enterocolitis

In the United States, 9.9% of neonates were born prior to
37weeks’ gestational age in 2017; these births are classified
as preterm.1 Many of these premature neonates require
extended hospitalization due to comorbid factors due to
low gestational age and weight at birth. Necrotizing
enterocolitis (NEC) is the leading cause of death due to
gastrointestinal (GI) disease in preterm neonates, affecting
5–12% of neonates born at a very-low birth weight (VLBW;
<1500 g).2–10 NEC symptoms can be slow and insidious at
first, including feeding intolerance, but can quickly
progress to fulminant NEC with hallmark signs such as
pneumatosis intestinalis and/or portal venous gas.5,7,8,11–15

In neonates with NEC who require surgery to resect the
perforated portions of bowel, the mortality rate is estimated
between 20 and 30%, the highest mortality rate among neo-
nates requiring surgery.16 On average, neonates not requir-
ing surgery are estimated to be hospitalized in the neonatal
intensive care unit (NICU) 20 days longer as compared to
unaffected neonates, and neonates requiring surgery are on
average hospitalized a further 60 days longer.17 Therefore,
NEC accounts for a large portion of the financial burden
associated with preterm birth; indeed, the average total

treatment cost per patient is estimated to be $500,000,
with the total cost per year in the United States estimated
between $500 million and $1 billion.7,8,17,18 Furthermore,
the need for bowel resection surgery as a complication of
NEC is the primary cause of neonatal short-bowel syn-
drome (SBS); in these cases, the average cost of care for
the first five years of life is estimated to be $1.5 million
per patient.19

NEC risk factors and pathogenesis

NEC pathophysiology is generally hypothesized to be
multi-factorial, common risk factors include low gestation-
al age at birth, low birth weight, chorioamnionitis, mechan-
ical ventilation, and many more.2,3,13,14,16,20,21 Research into
the pathophysiology of NEC has further uncovered risk
factors such as genetic predisposition, intestinal immaturi-
ty, changes in microvascular tone, and abnormal microbial
colonization.7,8,15,22 Although no studies have found a clear
genetic phenotype associated strongly with NEC, studies
have found a familial predisposition for the disease.23 Most
studies further suggest that genetic variants leading to the
upregulation of downstream signaling receptors of Toll-like
receptor-4 (TLR-4), an innate immune receptor, may
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increase the risk of developing NEC.24–27 Specifically, these
signaling regulators may include nuclear factor kB1, the
small glycolipid transport protein ganglioside GM2 activa-
tor, co-receptor molecule lymphocyte antigen 96, and single
Ig interleukin (IL)-1 related receptor.8 Previous studies
have shown that pro-inflammatory cytokines involved in
TLR signaling, such as IL-6 and IL-8, are elevated at the
time of NEC diagnosis and may also be elevated during
the early stages of the disease.28,29 Both of these cytokines
are increased within the first 2 to 4 h after infection and then
decline gradually over the next 24 h.30,31 Gender and racial
disparities in NEC incidence are most likely due to genetic
variations, such as single nucleotide polymorphisms, in
these populations.32

Preterm neonates are more susceptible to intestinal
injury due to the underdeveloped nature of their intes-
tine.33–37 Specifically, preterm neonates lack several GI
defense mechanisms such as gastric acid, digestive
enzymes, mucus production, peristalsis, and polymeric
immunoglobulin A (IgA).34,35,38 In healthy patients, gastric
acidity and digestive enzymes eliminate most antigens and
ingested pathogens, while mucus inhibits microbial adher-
ence.38,39 Active organized peristalsis is required to prevent
bacterial immobility and to eliminate antigen–antibody
complexes that can be detrimental to the GI tract.38–41

Finally, polymeric IgA is required to bind luminal antigens
to reduce their risk of penetration.38–41 All of these critical
defenses are under developed in preterm neonates, increas-
ing their susceptibility to GI injury and disease.33–37

In addition to these defenses, nitric oxide may also play a
role in the pathogenesis of NEC.8,14,15 Low levels of nitric
oxide regulate mucosal blood flow and vascular tone,
but high levels may weaken the gut barrier through
increased bacteria translocation, impaired mitochondrial
function, and decreased leukocyte recruitment to the
endothelium.42,43

At birth, neonates are rapidly exposed to environmental
bacteria, initially through maternal vaginal flora and enter-
al feedings. Preterm neonates experience a delayed and
often inappropriate colonization, leading to increased
inflammatory responses and abnormal bacterial glycosyla-
tion patterns.38,39,44 Further complications include delayed
enteral feedings, early exposure to broad spectrum antibi-
otics, and formula feeding, which all contribute to the
delayed colonization of the gut and an increased risk of
pathogenic colonization.38,39,44 Studies comparing the
microbiota of preterm neonates who develop NEC, as com-
pared to control neonates, have found that NEC leads to
unusual intestinal microbial species and an overall reduc-
tion in microbiota diversity.42,45 This reduction in diversity
of the microbiome may leave neonates more susceptible to
infectious diseases, especially when harmful bacteria may
be introduced via catheterization and enteric feeding.46,47

Other risk factors for NEC include maternal, ex-utero
transition, and neonatal care factors.2–5,7,8,12–15 Maternal
risk factors include illicit drug abuse, infection with cho-
rioamnionitis, and HIV-positive status.2,7,8,13,48 Risk factors
that occur during the transition to ex-utero life include low
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flow and perfusion states due to perinatal events, such as
placental abruption, leading to neonatal shock which is
characterized by hypovolemia and academia.9,10,49

These conditions are reflected in the Score for Neonatal
Acute Physiology (SNAP) and/or Apgar score at 5min of
life; these scores have been shown to be reliable and signif-
icant predictors of neonatal mortality in preterm neonates,
and scores are typically decreased in neonates who later
develop NEC.21,50 Neonatal care factors include respiratory
support, feeding type, and pharmacological interventions.
Studies have also shown that neonates who require respi-
ratory support during the early neonatal period are
12.6 times more likely to develop NEC.51 Formula feeding
without supplemental breast milk has also been shown to
increase the risk of developing NEC by 6.4 times.39,44,51

Furthermore, pharmacological interventions such as hista-
mine H2 receptor antagonists, indomethacin, indomethacin
tocolysis, glucocorticoids, and concomitant use of indo-
methacin and glucocorticoids also leave the neonate at an
increased risk of developing NEC.21,52 Finally, congenital
abnormalities, especially those affecting the heart and/or
GI, such as congenital heart disease, patent ductus arterio-
sus, and gastroschisis, can increase the risk of NEC.52–54

NEC diagnosis and treatment

Typically, NEC is diagnosed via the Bell’s Modified Staging
Criteria, which has three classical stages of NEC: mild
(Bell’s Stage I), moderate (Bell’s Stage II), and severe
(Bell’s Stage III).11 Mild or suspected NEC (Bell’s Stage I)
is classified by mild systemic signs such as temperature
instability and bradycardia, in addition to mild non-
specific intestinal signs such as mild abdominal distension
and occult blood in the stool.7,8,11 Moderate or definitive
NEC (Bell’s Stage II) further includes radiological findings
of pneumatosis intestinalis and/or portal venous gas
with moderate systemic signs such as abdominal tender-
ness, thrombocytopenia, and metabolic acidosis.7,8,11

These systemic and local factors leave the intestine, specif-
ically the distal ileum and proximal colon, susceptible
to inflammatory processes and perforation leading to pneu-
moperitoneum.55,56 Finally, advanced NEC (Bell’s Stage III)
requiring surgical intervention is characterized by bowel
perforation with resultant pneumoperitoneum, hypoten-
sion, signs of peritonitis, and severe metabolic acidosis.7,8,11

Gestational age must also be taken into account when
considering the diagnosis of NEC, where gestational age
and the onset and severity of NEC symptoms have an inverse
correlation.10,20,57 Studies have shown that the mean gesta-
tional age at birth of peak NEC onset is 32weeks.58

Current treatment strategies of NEC differ based on the
severity stage, but generally include broad-spectrum anti-
biotics, bowel rest, and ionotropic and fluid support.3,7,8

Surgical intervention to resect portions of the ischemic
bowel is required if the disease progresses to the advanced
stages.3,5,7,8,12,21 Broad-spectrum antibiotics are typically
prescribed where there is concern for sepsis, including
antibiotics to cover anaerobic organisms which are also pre-
scribed in cases of suspected or confirmed perforation.3,7,8

Depending on the severity stage, treatment may

also include the management of hypotension, metabolic
acidosis, and thrombocytopenia.3,7,8 Overall, although our
knowledge of the pathogenesis of NEC has advanced over
the past few decades, treatment strategies have not impact-
ed the frequency or severity of the disorder; therefore,
the focus of clinical and basic science has shifted to the
prevention of NEC.

NEC prevention

Due to the lack of effective treatments for NEC, research
focus has shifted to testing strategies for the prevention of
NEC, specifically early exposure to colostrum andmother’s
own milk, careful nutritional consideration, probiotics,
environmental protection, skin-to-skin care (SSC), and
pharmacology.2–5,14 Colostrum, the first milk produced by
mothers in the days after birth, has been shown to contain
high concentrations of beneficial immune mediators that
provide bacterial and anti-inflammatory protection and
stimulate the development of the GI tract.59–64 Our group
has shown recently that oropharyngeal administration of
colostrum increases salivary secretory IgA levels,65 which
may be protective against NEC. Other studies have shown
that preterm neonates receiving colostrum had a signifi-
cantly decreased incidence of neonatal sepsis66 and short-
ened time to attain full enteral feeds.64 Oropharyngeal
colostrum may convey these benefits to the neonates
by stimulating the oropharyngeal-associated lymphoid
system, providing a mucosal barrier to prevent microbial
adhesion, and inducing systemic immune responses.67

Additionally, colostrum has a high concentration of
growth factors that may stimulate intestinal growth and
development, particularly in mothers who have delivered
preterm neonates.68,69 Although no studies have reported
harmful effects of colostrum administration, further ran-
domized clinical trials are needed to evaluate its efficacy
and elucidate its mechanism of action.64,66

Many studies have shown the benefits of neonates, espe-
cially preterm neonates, receiving either mother’s own or
banked breast milk.2,3,6,8,60–62,70–72 In the preterm neonates,
however, there are several challenges that can prevent them
from receiving enteral feeds of breast milk. These chal-
lenges include an underdeveloped suck-swallow-breathe
reflex, motor coordination issues, GI reflux, and low body
stores of energy.9,20,33,36,37,73 Aggressive enteral feeding in
the presence of these issues or respiratory and/or
cardiac support, feeding intolerance, or high doses of cer-
tain medications can lead to an increase in NEC suscepti-
bility.2,3,13,14,21,48,62 Therefore, after birth, preterm neonates
often receive parenteral nutrition while progressing to full
enteral volume under careful monitoring.3,6,62 Trophic, low
volume feeds of colostrum and mother’s own or banked
breast milk are widely recognized as the best means of gut
protection by preventing villous atrophy, mucosal injury,
and leaky gut.2–7,12,13,62,63 Human breast milk contains
many factors thought to help prevent NEC including
nitrate/nitrite antioxidant factors, L-arginine, human milk
oligosaccharides and prebiotics, secretory IgA, platelet-
activating factor acetylhydrolase, lactoferrin, and growth
factors.8,59,62,71,72,74,75
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Administration of probiotics and commensal bacteriamay
protect the preterm gut against inflammation and injury via a
variety of mechanisms.47,76–78 These mechanisms are thought
to include down-regulation of pro-inflammatory gene
expression, upregulation of cytoprotective genes, production
of butyrate, and regulation of cellular immunity.46,47,77,79

These mechanisms may work to support gut barrier matura-
tion and function, lower the pH of the gut, inhibit other
microbes, and nourish colonocytes.46,76,77,79 Randomized
clinical trials and observational studies have found that pro-
biotics reduce the incidence of NEC and all-cause mortality,
and no harmful effects have been reported.47,76–84 However,
the precise probiotic agent, along with its timing, dose, dura-
tion, and most effective formulation in preventing NEC has
not yet been established.80–84 In addition to the administra-
tion of probiotics, environmental factors may also be effective
in the prevention of NEC.

Environmental protective strategies, such as reducing
exposure to excessive light and sound, cue driven care,
and SSC may also be critical in the prevention of NEC.
SSC has been shown to decrease mortality rates, improve
short- and long-term developmental outcomes, and
strengthen the bond between infant and mother, among
other positive effects.61,85–87 In this regard, increased fre-
quency of SSC is associated with increased vagal tone
during the first week of life, and predicted diminished
neonatal morbidity.88 Furthermore, SSC decreases the inci-
dence and severity of NEC.61,85–87 These studies suggest
that SSC enhances stress resiliency, reduces allostatic
load, and leads to improved health outcomes.88 Animal
models suggest that SSC may improve resting vagal tone
and promote maturation of vago-vagal circuits; these stud-
ies have specifically shown that maternal proximity
improves autonomic functioning, arousal regulation, and
orienting behavior in newborn rats.87,89 In these animal
models, isolated components from the dam such as mater-
nal body heat or smell affected the respective body systems
in the pups.87 This suggests that SSC integrates the thermal,
rhythmic, and sensory components of maternal presence
to integrate autonomic functions in the newborn.87,89

Thus, the widespread use of SSC, beginning soon after pre-
term birth and continuing daily throughout hospitalization
is proposed as a foundational element of care to reduce
morbidity, especially in the prevention of NEC.61,85–88

In addition to these environmental protective strategies,
several studies have evaluated the potential of numerous
pharmacological treatments to prevent the onset of NEC,
with varying results. The use of antenatal steroids to reduce
the incidence of NEC is controversial, as steroids increase
the incidence of spontaneous intestinal perforation, but no
studies to date have found a clear correlation between ste-
roid use and NEC.21,74 Other pharmacological interven-
tions under consideration in animal models include those
that modulate inflammation, specifically those that affect
TLR signaling.24–27,90–93 Studies in rodent models of NEC
and in samples of resected bowel from NEC neonates sug-
gest that there are more TLR-4 surface receptors in NEC
cases as compared to controls or full-term neonates.24,26,94

High levels of inflammation, like those seen in NEC, lead to
differential localization of TLR-4 receptors, making them a

potential target for the treatment of NEC and inflammatory
disorders.24,26,94 Other pharmacological treatments current-
ly under investigation include, but are not limited to,
heparin-binding EGF-like growth factor,95–97 human milk
oligosaccharides,60,72 and lactoferrin,75 but more research is
needed to evaluate their efficacy and safety.

Long-term outcomes of NEC

Neonates who survive medical or surgical NEC are at an
increased risk for long-term GI and neurodevelopmental
complications. Surgical treatment of NEC typically includes
resection of ischemic bowel portions; the long-term
outcome of these patients is dependent on the length of
remaining intestine and its ability to absorb nutrients ade-
quately.18,55–57 Specifically, ileal resection may lead to GI
dysmotility, abnormal mucosa, bacterial overgrowth, and
vitamin B12 or enzyme deficiency, causing malabsorption of
nutrients.18,55–57 Furthermore, NEC is the most common
cause of SBS in neonates, which can lead to GI complications
such as gastric acid hyper-secretion, bacterial overgrowth,
D-lactic acidosis, translocation of enteric bacteria to the blood-
stream, and intestinal failure-associated liver disease.18,55–57,98

Clinical management of SBS requires a multi-disciplinary
approach to ensure that the neonate receives sufficient nutri-
tion for growth, to maximize intestinal adaptation, and to
minimize fluid, electrolyte, and nutritional losses.98

In addition to potential GI complications, neonates with
NEC are at an increased risk for persistent neurological and
cognitive alterations. NEC Stage�2 is associated with long-
term neurodevelopmental impairment, and these neonates
have an increased incidence of cerebral palsy, visual, cog-
nitive and psychomotor impairment.99,100 These long-term
effects are likely due to NEC occurring during a critical
developmental time frame, when the developing brain is
vulnerable to insults and nutritional deficits.100–103 Acute
insults as a result of NEC may include systemic inflamma-
tion, hypoxia, ischemia, and multisystem organ failure, but
long-term nutritional deficits due to SBSmay also impact the
developing brain.100–103 The exact mechanisms underlying
these long-term impairments remains unclear; however, the
increased levels of local inflammation and circulating pro-
inflammatory cytokines suggest that inflammationmay play
a major role.100,101 Some researchers hypothesize that intes-
tinal injury and barrier dysfunction as a result of NEC allows
for the translocation of inflammatory mediators into system-
ic circulation.100,101 These inflammatory mediators may then
target vulnerable cerebral oligodendrocytes and microglia,
both of which are still developing during the peak time of
NEC incidence.100,101 This theory is supported by studies
that report increased NEC severity is associated with
adverse neurodevelopment and that increased serum
levels of pro-inflammatory cytokines in NEC neonates are
associated with increased risk for poor growth and
development.104,105

Unresolved issues

The devastating effects of NEC mandate the development
of minimally invasive predictive biomarkers to identify
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neonates at risk prior to the onset of clinical signs; one of the
most promising non-invasive biomarkers currently
under investigation is heart rate variability (HRV). HRV
measures can be calculated based on electrocardiogram
(ECG) recordings, using a fast Fourier transformation of
inter-beat-interval (IBI) values for both time- and
frequency-domain analysis.106–112 In time-domain analysis,
the difference between sequential IBI values and root-mean-
square of successive differences (RMSSD) represent vagal
tone; similarly, the HF power spectrum (HF-HRV) in
frequency-domain analysis assesses indirectly vagal para-
sympathetic outflow and has been identified as a marker
for fetal and neonatal wellbeing.111–114 Conversely, the low
frequency (LF) spectrum of HRV frequency-domain analysis
represents a mix of sympathetic and parasympathetic out-
flow.106–112 Our group has shown that preterm neonates who
later develop NEC display a diminished HF-HRV power
prior to the onset of clinical signs, as compared to control
neonates.113 We have also shown that a rat model of mild
NEC significantly attenuates the typical developmental
increases in HF-HRV when combined with the stress of
laparotomy or subdiaphragmatic vagotomy.115 The major
advantages of HF-HRV include its utility in non-invasively
predictingNEC days toweeks before its onset, relatively low
cost, and ease of analysis using existing software.

Another non-invasive method that has been evaluated
in the prediction of NEC is breath hydrogen monitor-
ing.116–118 This test relies on analyzing the various gases
present in human breath, including carbon dioxide,
carbon monoxide, hydrogen, and nitric oxide.117 Breath
hydrogen can be used to indirectly assess stress levels in
the GI mucosa; increased concentrations of hydrogen in
breath samples indicate bacterial metabolization of luminal
substrates.116,117 Studies have shown elevated concentra-
tions of hydrogen in the breath of neonates who later devel-
op NEC on average 24 h before NEC diagnosis.119,120 Some
studies report a high sensitivity and specificity for breath
hydrogen monitoring in the detection of NEC, but it has
been shown to have a low positive predictive value of only
33%.119,120 In addition to this low positive predictive value,
there are also technical difficulties and confounders that
limit its use as a predictive biomarker. Specifically, the
site of breath collection must be tightly sealed and the mea-
sure is affected by many covariates; interference can
be caused by changes in the microbiome, tidal volume,
respiratory rate, breath holding, the patient’s cardiopulmo-
nary status, and need for mechanical ventilation.117

Furthermore, calibration can often be an issue as breath
hydrogen levels must be standardized to amount of
carbohydrates in enteral feeds, which is often changing in
preterm neonates.116–120 Overall, experts in the field agree
that the confounders of this technique outweigh its utility,
and agree there are practical and theoretical flaws with
breath hydrogen monitoring for the detection of NEC.117,118

Other biomarkers under investigation include pro-
inflammatory cytokines, C-reactive protein (CRP), and
serum amyloid A (SAA).22,121 The early rise in cytokine
levels has been shown to have high specificity in the
diagnosis of neonatal sepsis alone, but combination with
additional biomarkers is needed to have specificity

and sensitivity for NEC diagnosis.28,29,31,122,123 CRP is a
generalized biomarker of inflammation and was previously
one of the most widely used predictive biomarkers of NEC
and sepsis by clinicians in the NICU.31,121–123 However,
studies have shown a wide range of sensitivity levels
using CRP for the prediction of early onset neonatal
sepsis, perhaps due to its wide range of comorbid associa-
tions such as meconium aspiration syndrome.31,121 Due to
this lack of sensitivity and relative high cost for CRP anal-
ysis, currently, most clinicians do not utilize CRP as a bio-
marker of NEC.28,29,49,123–125 Alternatively, SAA levels rise
earlier in the inflammatory response as compared to CRP,
and SAA has a high sensitivity level in the prediction of
neonatal sepsis.126,127 Currently, clinicians most commonly
use advancing thrombocytopenia and elevated neutrophils
as a marker of NEC progression and need for surgical inter-
vention.3,5,8,18 Overall, serum biomarkers likely have the
most clinical relevance when used in combination with
one another, and perhaps in addition to a non-invasive
marker such as HF-HRV.128–130 However, the collection of
serum biomarkers can be invasive and stress-inducing, and
results from these tests may not be received quickly enough
to ensure neonates receive preventative measures to avert
the onset of NEC.

Animal models of NEC

Insights into the pathogenesis and novel treatments of NEC
have largely resulted from the study of animal models;
currently, the most commonly used animal models for
NEC are rats, mice, and piglets.4,7,8,15,131,132 In rats, NEC
is typically induced in newborn rats through differing com-
binations of cesarean section, maternal separation, formula
feeding, hypoxia, hypothermia, ischemia-reperfusion, and
administration of intragastric lipopolysaccharide (LPS) or
commensal bacteria.4,7,8,15,131,132 Studies relating human
development have shown that rats at postnatal day 12/13
are representative of a term human neonate; therefore,
newborn rat pups are an excellent model for the study of
preterm neonates.133,134 The first rat model of NEC was
described in 1974,70 and consisted of formula feeding and
hypoxia. Shortly thereafter, the same group found hypo-
thermia and hypoxia to be the key stressors in inducing
moderate NEC.135 Our group has since established a mild
form of NEC (equivalent to Bell’s Stage I) in rats through
administration of hypothermia and hypoxia twice daily;
this mild NEC is more representative of the early stages
of NEC when preventative treatments would have the
most efficacy.115 We have also shown that ghrelin, an orexi-
genic GI peptide, is able to attenuate the effects of mild
NEC in rats, in a vagally dependent mechanism.136 Other
models also include treatments such as intragastric LPS or
commensal bacteria from stool samples to determine the
roles of IL-18,137 IL-12,137 intestinal epithelial apoptosis,138

maternal milk,71,72 probiotics,139 NF-kB,140 nitric oxide dys-
regulation,42,141 and many more. Some models also include
ischemia-reperfusion injury to mimic intestinal injuries
occurring in NEC,142 but these models are more controver-
sial as the direct connection to NEC remains uncertain.143

Overall, rat models can be highly effective in the study of
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NEC due to their ready availability, relative low cost, and
high litter size. However, as few transgenic rat strains relat-
ed to NEC pathology are commercially available, they do
have limitations.

Similar to rat models, NEC in mice is typically induced
through formula feeding, hypoxia, hypothermia, commen-
sal bacteria administration, and ischemia-reperfusion, or
through transgenic manipulation.4,7,8,15,131,132 The most
widely used non-transgenic murinemodel of NEC includes
formula feeding, hypoxia, and hypothermia, and induces
NEC with gross and microscopic evidence of intestinal
necrosis.24,144,145 This model has been used to study the
role of various genes in the pathogenesis of NEC, including
TLR-4,24 IL-18,146 MUC2,147 among others. Transgenic NEC
mouse studies have evaluated the effect of manipulation to
genes including IFN-c,148 TLR-4,26,91–93 TLR-9,91 inducible
nitric oxide synthase,149 70 kD heat shock proteins
(HSP70),90 and many more. Such studies have begun to
elucidate the role of the innate immune system on the
developing GI tract and NEC,131 but further studies are
needed to develop possible therapeutics to treat NEC.
In summary, mice are an effective model of NEC due to
the widely available transgenic strains, ease of genetic
manipulation, high litter size, and relative low cost but
can be difficult to handle due to their small size.

Piglets have a GI tract very similar to humans with
regard to anatomy, development, nutrition, and physiolo-
gy; these characteristics make them an ideal model for the
study of NEC.131,150 Similar to rodent models, NEC is
inducible in piglets through different combinations of for-
mula feeding, hypothermia, and hypoxia.151,152 One of the
most widely accepted models was established in 2006, and

involves cesarean section at 92% gestation and total paren-
teral nutrition followed by formula feeding, without hyp-
oxia or hypothermia.153 This model is sufficient to increase
in IL-6,154 as seen in human neonates with NEC, and was
used to study the effects of colostrum,153 human milk,155

amniotic fluid,156 antibiotics,157 and changes in microvas-
culature.158 Overall, piglets are an excellent model for NEC
because of their anatomical and physiological similarity to
the GI tract of humans, but are much more difficult and
expensive to maintain than rodents.131

Brainstem control of autonomic function

In the caudal brainstem, vago-vagal circuits are comprised of
multiple nuclei, including the nucleus tractus solitarius
(NTS), the dorsal motor nucleus of the vagus (DMV), and
the nucleus ambiguus (NA).159 The NTS receives visceral
sensory inputs, while the DMV and NA are the origin of
vagal motor fibers that form synaptic connections with post-
ganglionic neurons in the target organ to modulate function-
ing.159–161 Specifically, the NTS integrates brainstem, limbic,
and hypothalamic inputs to coordinate, among others, GI
reflexes, motility, and emptying by sending signals to adja-
cent motor nuclei such as the DMV.159–162 The DMV is com-
prised of preganglionic parasympathetic neurons that
innervate the GI tract from the lower third of the esophagus
to the splenic flexure in the transverse colon.159,161,163,164

These slow, spontaneously firing pace-making neurons of
the DMV are involved in the fine modulation of GI tone,
motility, and secretion through the vagus nerve.159,161,163,165

Postganglionic neurons of the myenteric plexus, located
between the longitudinal and circular smooth muscle of

Figure 2. GI vago-vagal reflexes. (A color version of this figure is available in the online journal.)

NANC: non-adrenergic non-cholinergic.
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the GI tract, use two distinct pathways to modulate GI
functioning: an excitatory cholinergic pathway and an
inhibitory non-adrenergic non-cholinergic (NANC) path-
way.159,161,162,164,166 The excitatory cholinergic pathway
uses acetylcholine to induce smooth muscle contraction via
activation of muscarinic receptors, while the inhibitory
NANC pathway induces relaxation of smooth muscles via
release of vasoactive intestinal polypeptide or nitric
oxide.159,161,166 Studies have shown that the excitatory cho-
linergic pathway is tonically active and plays a major role in
the control of basal gastric tone andmotility, while the inhib-
itory NANC pathway does not appear to be tonically
active.159,161,165 Overall, bidirectional communication
between the gut and the brain regulates homeostasis; these
vago-vagal brainstem circuits are neuroplastic and able to
respond to internal and external stressors.159,163,167–170 A lack
of adaptability or resiliency to these stressors or other
adverse events frequently results in GI dysfunctions such
as delayed gastric emptying and/or accelerated colonic
motility.171–177

Heart rate and cardiac function are modulated by pre-
ganglionic parasympathetic cardiac neurons in the brain-
stem, located primarily in the NA.178–185 These neurons
have a tonic level of parasympathetic firing in conscious
and anesthetized animals; this pattern is synchronized to
the cardiac pulse.178–183 The activation of cardiac vagal neu-
rons is influenced strongly by the activation of NTS path-
ways modulated by glutamate and c-aminobutyric
acid.186,187 Furthermore, the respiratory system can influ-
ence cardiovascular reflexes through the modulation of
baroreceptor and chemoreceptor inputs to cardiac vagal
neurons.188,189 Cardiac vagal neurons are also involved in
a number of higher order connections with nuclei such as
the locus coeruleus and the paraventricular nucleus (PVN)
of the hypothalamus.184,185,190–192 Specifically, the PVN is
involved in the control of autonomic function under both
normal conditions and during stress challenges, such as
hypoxia.184,185,193 Studies have shown that many disease
states induce diminished cardiac vagal activity, as mea-
sured through both the firing properties of the neurons
and through HF-HRV.113,194–203 Diseases that decrease car-
diac vagal activity include NEC, hypertension, diabetes,
hypothyroidism, coronary/peripheral artery disease, and
chronic obstructive pulmonary disease, to name a
few.113,194–203We have recently demonstrated a positive cor-
relation between HF-HRV and GI motility in rats,204 sup-
porting the hypothesis that the reduction in HF-HRV
power observed in preterm neonates prior to the develop-
ment of NEC is associated with decreasing GI motility in
these neonates.

Conclusion

Overall, NEC is a devastating disease that mandates the
development of non-invasive methods to predict its onset
before clinical signs. The pathogenesis of NEC is still under
investigation, but major risk factors are thought to include
premature birth, low birth weight, chorioamnionitis, and
mechanical ventilation. In addition, preterm neonates
may be more susceptible to NEC due to their

underdeveloped intestine and lack of fully developed GI
defense mechanisms. Current treatment strategies
generally include broad-spectrum antibiotics, bowel rest,
ionotropic and fluid support, and surgery if the bowel per-
forates. There is a critical need for reliable, non-invasive
biomarkers to determine which neonates are at an
increased risk of developing NEC, before the onset of clin-
ical signs. A biomarker such as the reduced HF-HRV in
combination with the detection of pro-inflammatory cyto-
kines would allow at-risk neonates to receive maximal
preventative therapies such as early exposure to colostrum
and mother’s own milk, careful nutritional consideration,
probiotics, increased SSC, and pharmacology.
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