Final CAT (Rotation 7 Week 2)

CLINICAL QUESTION:

A 50-year-old male presents to the office with complaints of hesitancy, postvoid dribbling, and sensation of incomplete bladder emptying. He reports recurrent urinary tract infection with gross hematuria. DRE reveals a smooth, firm, enlarged prostate. The patient requires surgical intervention. The PA wants to know if transurethral resection of the prostate is more effective than prostate artery embolization in treating BPH?

PICO QUESTION:

In the adult population, is transurethral resection of the prostate (TURP) more effective than prostate artery embolization (PAE) in treating benign prostate hyperplasia?

Ρ	1	с	0
Adults	TURP	PAE	Improved BPH
Benign prostate hypertrophy	Transurethral resection of prostate	Prostate artery embolization	Improved urinary symptoms
Adults with BPH			Improved BPH symptoms
			No change in symptoms

PICO SEARCH TERMS:

SEARCH STRATEGY:

Database Results:

1. PubMed

- Transurethral resection of the prostate versus prostate artery embolization \rightarrow 145
 - Filters: 5 years, meta-analysis, systematic review, RCT \rightarrow 23
 - Filters: 10 years, meta-analysis, systematic review, RCT \rightarrow 29
- Comparing TURP versus PAE for BPH \rightarrow 13
 - \circ Filters: 5 years, meta-analysis, systematic review, RCT \rightarrow 6
 - Filters: 10 years, meta-analysis, systematic review, RCT \rightarrow 9
- 2. Google Scholar
 - Transurethral resection of the prostate versus prostate artery embolization \rightarrow 1,420
 - Filters: 5 years, sort by relevance, review article \rightarrow 621
 - Comparing TURP versus PAE for BPH \rightarrow 9,550
 - Filters: 5 years, sort by relevance, review article → 486
- 3. ScienceDirect
 - Transurethral resection of the prostate versus prostate artery embolization → 384
 Filters: 5 years, sort by relevance, research article → 103
 - Comparing TURP versus PAE for BPH → 54
 - \circ Filters: 5 years, sort by relevance, research article \rightarrow 25
- 4. Wiley Online Library
 - Transurethral resection of the prostate versus prostate artery embolization \rightarrow 296
 - Filters: 5 years, journal articles \rightarrow 71

Selection Process:

I narrowed down the results by looking for studies that focused on the efficacy of transurethral resection of the prostate versus prostate artery embolization. I aimed to make sure the articles gave special attention the adult male patient population with benign prostate hyperplasia so that it is more relevant to my clinical scenario. To further narrow down my results, I checked for articles that were recent within the last 5 years and were either meta-analysis, systematic review, or RCT. I further narrowed down the choices by selecting articles with relevant titles and briefly assessing the abstract. I wanted studies that were relevant to my scenario, therefore I focused on studies that were performed in the U.S. with a concentration on the BPH patient population. My selection process was directed to include the most relevant and highest level of evidence to determine if TURP or PAE results in more successful outcomes for the treatment of BPH.

ARTICLES CHOSEN:

Article #1 Systematic Review and Meta-analysis Comparing Prostatic Artery Embolization to Gold-Standard Transurethral Resection of the Prostate for Benign Prostatic Hyperplasia

Citation: Knight GM, Talwar A, Salem R, Mouli S. Systematic Review and Meta-analysis Comparing Prostatic Artery Embolization to Gold-Standard Transurethral Resection of the Prostate for Benign Prostatic Hyperplasia. *Cardiovasc Intervent Radiol.* 2021;44(2):183-193. doi:10.1007/s00270-020-02657-5

Type of Study: Meta-Analysis, Systematic Review

Abstract:

Purpose: To report a comparative systematic review and meta-analysis of prostatic artery embolization (PAE) and transurethral resection of the prostate (TURP) for the management of benign prostatic hyperplasia (BPH).

Methods: A multi-database search for relevant literature was conducted on 15 July 2020 to include studies published on or before that date. Search terms used were: (prostate embolization OR prostatic embolization OR prostatic embolization OR prostatic embolization) AND (prostatic hyperplasia OR prostatic obstruction). Risk of bias was assessed using Cochrane Collaboration and ROBINS-I criteria. Random-effects meta-analysis was performed using RevMan 5.3.

Results. Six studies with 598 patients were included. TURP was associated with significantly more improvement in maximum urinary flow rate (Qmax) (95% CI [2.66,7.38]; p < 0.0001; I2 = 89%), prostate volume (95% CI [7.93,23.25]; p < 0.00001; I2 = 88%), and prostate-specific antigen (PSA) (95% CI [0.14,1.89]; p = 0.02; I2 = 71%) compared to PAE. No significant difference between PAE and TURP was observed for changes in International Prostate Symptoms Score (IPSS), IPSS quality of life (IPSS-QoL), International Index of Erectile Function (IIEF-5), and post-void residual (PVR). PAE was associated with fewer adverse events (AEs) (39.0% vs. 77.7%; p < 0.00001) and shorter hospitalization times (p < 0.00001), but longer procedural times (p = 0.004).

Conclusions: Subjective symptom improvement was equivalent between TURP and PAE. While TURP demonstrated larger improvements for some objective parameters, PAE was associated with fewer AEs and shorter hospitalization times.

Link: https://link.springer.com/article/10.1007/s00270-020-02657-5

Article #2 Randomized Comparison of Prostatic Artery Embolization versus Transurethral Resection of the Prostate for Treatment of Benign Prostatic Hyperplasia

Citation: Insausti I, Sáez de Ocáriz A, Galbete A, et al. Randomized Comparison of Prostatic Artery Embolization versus Transurethral Resection of the Prostate for Treatment of Benign Prostatic Hyperplasia. *J Vasc Interv Radiol*. 2020;31(6):882-890. doi:10.1016/j.jvir.2019.12.810

Type of Study Randomized Controlled Trial

Abstract:

Purpose: To compare clinical and functional outcomes of prostatic artery embolization (PAE) with those of transurethral resection of the prostate (TURP) for the treatment of lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia (BPH).

Methods: Noninferiority randomized trial was conducted involving men over 60 years of age with LUTS secondary to BPH. From November 2014 to January 2017, 45 patients were randomized to PAE (n = 23) or to TURP (n = 22). PAE was performed with 300- to 500-µm microspheres with the patient under local anesthesia, whereas bipolar TURP was performed with the patients under spinal or general anesthesia. Primary outcomes were changes in peak urinary flow (Qmax) and international prostate symptoms score (IPSS) from baseline to 12 months. Quality of life (QoL), and prostate volume (PV) changes from baseline to 12 month were secondary outcomes. Adverse events were compared using the Clavien classification.

Results: Mean Qmax increased from 6.1 mL/s in the PAE group and from 9.6 mL/s in the TURP patients (P = .862 for noninferiority), and mean IPSS reduction was 21.0 points for PAE and 18.2 points for TURP subjects (P = .080) at 12 months. A greater QoL improvement was reported in the PAE group (3.78 points for PAE and 3.09 points for TURP; P = .002). Mean PV reduction was 20.5 cm³ (34.2%) for PAE subjects and 44.7 cm³ (71.2%) for TURP subjects (P < .001). There were fewer adverse events reported in the PAE group than in the TURP group (n = 15 vs n = 47; P < .001).

Conclusions: Reduction of LUTS in the PAE group was similar to that in the TURP group at 12 months, with fewer complications secondary to PAE. Long-term follow-up is needed to compare the durability of the symptomatic improvement from each procedure.

Link: https://pubmed.ncbi.nlm.nih.gov/32249193/

Article #3 Comparison of Prostatic Artery Embolization (PAE) Versus Transurethral Resection of The Prostate (TURP) for Benign Prostatic Hyperplasia: Randomized, Open Label, Non-Inferiority Trial

Citation: D, Hechelhammer L, Mullhaupt G, Markart et al. Comparison of prostatic artery embolization (PAE) versus transurethral resection of the prostate (TURP) for benign prostatic hyperplasia: randomized, open label, non-inferiority trial *BMJ* 2018; 361:k2338 doi:10.1136/bmj.k2338

Type of Study: Randomized Controlled Trial

Abstract:

Objectives: To compare prostatic artery embolization (PAE) with transurethral resection of the prostate (TURP) in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia in terms of patient reported and functional outcomes.

Results: Mean reduction in IPSS from baseline to 12 weeks was –9.23 points after PAE and –10.77 points after TURP. Although the difference was less than 3 points (1.54 points in favour of TURP (95% confidence interval –1.45 to 4.52)), non-inferiority of PAE could not be shown (P=0.17). None of the

patient reported secondary outcomes differed significantly between treatments when tested for superiority; IPSS also did not differ significantly (P=0.31). At 12 weeks, PAE was less effective than TURP regarding changes in maximum rate of urinary flow (5.19 v 15.34 mL/s; difference 10.15 (95% confidence interval –14.67 to –5.63); P<0.001), postvoid residual urine (–86.36 v –199.98 mL; 113.62 (39.25 to 187.98); P=0.003), prostate volume (–12.17 v –30.27 mL; 18.11 (10.11 to 26.10); P<0.001), and deconstructive effectiveness according to pressure flow studies (56% v 93% shift towards less obstructive category; P=0.003). Fewer adverse events occurred after PAE than after TURP (36 v 70 events; P=0.003).

Conclusions: The improvement in lower urinary tract symptoms secondary to benign prostatic hyperplasia seen 12 weeks after PAE is close to that after TURP. PAE is associated with fewer complications than TURP but has disadvantages regarding functional outcomes, which should be considered when selecting patients. Further comparative study findings, including longer follow-up, should be evaluated before PAE can be considered as a routine treatment.

Link: https://www.bmj.com/content/361/bmj.k2338

Article #4 Efficacy and Safety of Prostatic Artery Embolization for Benign Prostatic Hyperplasia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Citation: Xiang P, Guan D, Du Z, et al. Efficacy and safety of prostatic artery embolization for benign prostatic hyperplasia: a systematic review and meta-analysis of randomized controlled trials. *Eur Radiol*. 2021;31(7):4929-4946. doi:10.1007/s00330-020-07663-2

Type of Study: Meta-Analysis

Abstract:

Objective: To investigate the efficacy and safety of prostatic artery embolization (PAE) vs. transurethral resection of the prostate (TURP) in patients affected by benign prostatic hyperplasia (BPH). We also reviewed mean changes from baseline in PAE at selected follow-up points. *Methods:* PubMed, Web of Science, and Embase were searched up to May 1, 2020. Randomized controlled trials on PAE were collected according to specific inclusion and exclusion criteria. Meta-analyses were performed using RevMan 5.3, STATA 14, and GraphPad Prism 8. Pooled patient-reported scores and functional outcomes were calculated by using a fixed or random-effect model. *Results:* Eleven articles met our selection criteria and ten independent patient series were included in the final analysis. Pooled estimates suggested no significant difference between TURP and PAE for patient-reported outcomes including International Prostate Symptom Score (2.32 (- 0.44 to 5.09)) and quality of life (0.18 (- 0.41 to 0.77)) at 12 months. PAE was less effective regarding improvements in most functional outcomes such as maximum flow rate, prostate volume, and prostate-specific antigen. Moreover, PAE may be associated with relatively fewer complications, lower cost, and shorter hospitalization. After the PAE procedure, the overall weighted mean differences for all outcomes.

Conclusion: PAE is non-inferior to TURP with regard to improving patient-reported outcomes, though most functional parameters undergo more changes after TURP than after PAE. Moreover, PAE can significantly continue to relieve symptoms for 24 months without causing serious complications.

Link: https://pubmed.ncbi.nlm.nih.gov/33449181/

Article #5 Prostatic Arterial Embolization for the Treatment of Lower Urinary Tract Symptoms in Men with Benign Prostatic Hyperplasia

Citation: Jung JH, McCutcheon KA, Borofsky M, et al. Prostatic arterial embolization for the treatment of lower urinary tract symptoms in men with benign prostatic hyperplasia. *Cochrane Database Syst Rev.* 2020;12(12):CD012867. Published 2020 Dec 19. doi:10.1002/14651858.CD012867.pub2

Type of Study: Meta-Analysis

Abstract:

Background: A variety of minimally invasive surgical approaches are available as an alternative to transurethral resection of the prostate (TURP) for management of lower urinary tract symptoms (LUTS) in men with benign prostatic hyperplasia (BPH). Prostatic arterial embolization (PAE) is a relatively new, minimally invasive treatment approach.

Methods: We performed a comprehensive search the Cochrane Library, MEDLINE, Embase, three other databases, trials registries, other sources of grey literature, and conference proceedings with no restrictions on language of publication or publication status, up to 8 November 2021.

Results: We found data to inform two comparisons: PAE versus TURP (six RCTs and two NRSs), and PAE versus sham (one RCT). Mean age was 66 years, International Prostate Symptom Score (IPSS) was 22.8, and prostate volume of participants was 72.8 mL. This abstract focuses on the comparison of PAE versus TURP as the primary topic of interest.

Conclusion: Compared to TURP, PAE may provide similar improvement in urologic symptom scores and quality of life. While we are very uncertain about major adverse events, PAE likely increases retreatment rates. While erectile function may be similar, PAE may reduce ejaculatory disorders. Certainty of evidence for the outcomes of this review was low or very low except for retreatment (moderate-certainty evidence), signaling that our confidence in the reported effect size is limited or very limited, and that this topic should be better informed by future research.

Link: https://pubmed.ncbi.nlm.nih.gov/33368143/

Article #6 Prostatic Artery Embolization Versus Transurethral Resection of the Prostate for Benign Prostatic Hyperplasia: 2-Yr Outcomes of a Randomized, Open-Label, Single-Centre Trial

Citation: Abt D, Müllhaupt G, Hechelhammer L, et al. Prostatic Artery Embolization Versus Transurethral Resection of the Prostate for Benign Prostatic Hyperplasia: 2-yr Outcomes of a Randomized, Open-label, Single-centre Trial. *Eur Urol*. 2021;80(1):34-42. doi:10.1016/j.eururo.2021.02.008

Type of Study: Randomized Controlled Trial

Abstract:

Objective: To compare the efficacy and safety of PAE and transurethral resection of the prostate (TURP) in the treatment of LUTS/BPO at 2 yr of follow-up.

Methods: A randomized, open-label trial was conducted. There were 103 participants aged \geq 40 yr with refractory LUTS/BPO. International Prostate Symptoms Score (IPSS) and other questionnaires, functional measures, prostate volume, and adverse events were evaluated. Changes from baseline to 2 yr were tested for differences between the two interventions with standard two-sided tests. **Results:** The mean reduction in IPSS after 2 yr was 9.21 points after PAE and 12.09 points after TURP (difference of 2.88 [95% confidence interval 0.04-5.72]; p = 0.047). Superiority of TURP was also found

for most other patient-reported outcomes except for erectile function. PAE was less effective than TURP regarding the improvement of maximum urinary flow rate (3.9 vs 10.23 ml/s, difference of -6.33 [-10.12 to -2.54]; p < 0.001), reduction of postvoid residual urine (62.1 vs 204.0 ml; 141.91 [43.31-240.51]; p = 0.005), and reduction of prostate volume (10.66 vs 30.20 ml; 19.54 [7.70-31.38]; p = 0.005). Adverse events were less frequent after PAE than after TURP (total occurrence n = 43 vs 78, p = 0.005), but the distribution among severity classes was similar. Ten patients (21%) who initially underwent PAE required TURP within 2 yr due to unsatisfying clinical outcomes, which prevented further assessment of their outcomes and, therefore, represents a limitation of the study. *Conclusion:* Inferior improvements in LUTS/BPO and a relevant re-treatment rate are found 2 yr after PAE compared with TURP. PAE is associated with fewer complications than TURP. The disadvantages of PAE regarding functional outcomes should be considered for patient selection and counselling.

Link: https://pubmed.ncbi.nlm.nih.gov/33612376/

Author	Level of	Sample/Setting	Outcome(s)	Key Findings	Limitations and
(Date)	Evidence	(# of subjects/	studied		Biases
		studies, cohort			
		definition etc.)			
Article 1:	Systematic	Authors used a	Outcomes:	While TURP afforded	The principal
	Review	combination of	(1) International	significantly increased	limitation of this
Knight GM,		RCTs and non-	Prostate	improvement compared to	meta-analysis
et al.		randomized studies	Symptoms Score	<u>PAE</u> in most objective BPH	was the
(2021)		comparing PAE and	(IPSS)	parameters assessed	relatively small
		TURP outcomes.		(Qmax, prostate volume,	<u>number of</u>
			(2) IPSS quality	and PSA), equivalent results	studies available
		Studies were	of life (IPSS-	were observed between	comparing PAE
		included if they	QoL)	PAE and TURP in rates of	and TURP—
		were (1) direct		subjective improvement in	particularly,
		comparative	(3) International	patient-reported	because only
		analyses of PAE	Index of Erectile	symptoms.	studies which
		and TURP in the	Function (IIEF-5)		evaluated both
		treatment of lower		PAE was associated with	PAE and TURP in
		urinary tract	(4) maximum	significantly fewer AEs	the same
		symptoms	urinary flow	compared to TURP	analysis could be
		secondary to BPH	rate (Qmax)		include.
		and (2) published		PAE was associated with	
		in the English	(5) post-void	increased procedural time	Thus, review
		language.	residual (PVR)	but decreased	articles that
				hospitalization time	solely evaluated
			(6) prostate	compared to TURP.	one procedure
			volume	Compared with past meta-	or the other
				analyses comparing PAE	were not
			(7) prostate-	and TURP for management	included in the
			specific antigen	of BPH, the results of the	present analysis
			(PSA)	present meta-analysis	

SUMMARY OF THE EVIDENCE:

				confirm the clinical benefit of PAE, and are less	
				unitormly in tavor of LURP.	
Article 2: Insausti I, et al. (2020)	Randomized Controlled Trial	Authors conducted a randomized trial that included 45 participants who were men over 60 years of age with LUTS secondary to BPH. Selection criteria: (1) >60 years (2) BPH-related LUTS refractory to medical treatment for at least 6 months or the patient could not tolerate medical treatment (3) TURP was indicated (4) International Prostate Symptom Score (IPSS) > 8 (5) quality of life (QoL) related to LUTS was > 3 (6) the peak flow rate (Qmax) was < 10 mL/s or urinary retention	Primary outcomes: (1) changes in peak urinary flow (Qmax) (2) international prostate symptoms score (IPSS) from baseline to 12 months Secondary outcomes: (1) Quality of life (QoL) (2) Prostate volume (PV) changes from baseline to 12 month Adverse events were compared using the Clavien classification.	uniformly in favor of TURP. Prostatic artery embolization (PAE) is emerging globally as a minimally invasive alternative to surgical therapy for the treatment of bladder outlet obstruction caused by benign prostatic hyperplasia (BPH). In this randomized comparison of PAE and TURP for the treatment of LUTS secondary to BPH, <u>no</u> <u>significant differences were</u> <u>found between PAE and</u> <u>TURP in terms of Q-max</u> <u>improvements.</u> This clinical trial adds to the evidence that <u>PAE is an</u> <u>effective and safe</u> <u>technique in the treatment</u> <u>of LUTS secondary to BPH,</u> <u>with clinical outcomes</u> <u>comparable to TURP</u> . In addition, because it can be performed with only local anesthesia, many individuals with surgical co- morbidities who previously were restricted to medical management, now have an additional option for bladder outlet obstruction treatment.	There were more exclusions than planned because of the initial inclusion of patients with prostates up to 120 g, who exceeded the limit established in the medical literature for TURP (100 g). Further limitations included the single-center design, the inability to blind patients in the enrolment arm, the medium- term follow-up period, and the prostate volume measurement by transabdominal ultrasonography rather than by prostate MR imaging
				was significantly less and patient satisfaction was significantly better in the PAE group.	

Article 3:	Randomized	Authors performed	Primary	PAE for the treatment of	Limitations of
	Controlled	a single center,	outcome	benign prostatic	this study
Hechelham	Trial	randomized	was change in	hyperplasia has been	include the
mer D, et al.		controlled clinical	IPSS from	introduced into clinical	number of
(2018)		trial that included	baseline to 12	practice without high level	patients was not
,		participants a with	weeks after	evidence and is now	high enough to
		refractory BPH-	surgery.	increasingly performed	conclusively
		LUTS that is	0 /	worldwide as it has a	, determine non-
		typically treated	Secondary	favorable side effect profile	inferiority or
		with TURP in	outcomes		inferiority of PAE
		everyday clinical	included further	Surgery for benign prostatic	versus TURP
		practice.	questionnaires,	hyperplasia is usually	
			functional	performed for refractory	Blinding of
		Selection criteria:	measures,	symptoms associated with	patients and
		(1) men at least 40	magnetic	reduced quality of life. But	, physicians was
		years	resonance	TURP has a more	not feasible in
			imaging	pronounced, pure	the framework
		(2) TURP indicated	findings, and	urodynamic deconstructive	of our trial.
			adverse events	effect than PAE.	Therefore, both
		(3) refractory to			patients and
		medical treatment		Considerably fewer and <u>less</u>	physicians might
		or not willing to		severe adverse events were	have been
		continue medical		<u>found after PA</u> E, which	biased in favor of
		treatment		could be performed under	or against a new
				local anesthesia and was	treatment.
		(4) Prostate size		associated with reduced	
		25-80 mL as		blood loss and shorter	
		measured by TAUS		duration of hospital stay	
				and catheterization than	
		(5) IPS of at least 8		TURP.	
		(6) QoL of at least 3			
		(7) Max urinarv			
		flow rate of less			
		than 12 mL/s or			
		urinary retention.			
Article 4:	Meta-	Authors searched	Primary	This systematic review and	No limitations or
	Analysis	PubMed, Embase,	outcomes	meta-analysis presents the	bias reported.
Xiang P, et		and Web of Science	(1) IPSS	latest summary of available	
al.		databases for this		RCTs of PAE vs. TURP at 12	
(2020)		meta-analyssis	(2) quality of life	months and simultaneously	
				indicates outcome changes	
		Selection criteria:	(3) postvoid	from baseline after the PAE	
		RCTs that reported	residual volume	procedure during the 24-	
		PAE treatment for	(PVR)	month follow-up period.	
		BPH, evaluating			
		patient-reported			

		scores, and	(4) maximum	Main finding was that PAE	
		functional	flow rate	is non-inferior to TURP with	
		outcomes.	(Omax)	respect to improving	
				patient- reported	
		10 studies with	(5) prostate	outcomes, including IPSS.	
		data were	volume (PV)	Ool, and IJEE-5 at 12	
		ultimately		months	
		included	(6) International		
		included.	Index of Frectile	However the improvement	
		Study inclusion did	Function 5 (IIFF-	of most functional	
		not depend on the	5)	outcomes such as O-max	
		number of na-	51	PV and PSA TURP was	
		tients follow-up	(7) prostate-	superior to PAF	
		neriod and	specific antigen	<u>superior to rac</u>	
			(PSA)	Further comparative trials	
		narameters	(1 3/ ()	with standardized PAF	
		parameters	(8) Duration of	procedures longer follow-	
			intervention	up periods and cost-	
			hospital stay	effectiveness analyses are	
			nospital stay	needed to confirm these	
			(9) Adverse	promising clinical results	
			events		
Article 5	Systematic	Authors conducted	Primary	Based on up to 24 months'	No limitations or
, a cicle 5.	Review	a systematic review	outcomes:	follow-up_PAE and TURP	hias reported
Jung JH, et	nevien	that nine studies	(1) Urologic	may work similarly well in	blasteporteor
al. (2022)		(seven RCTs: 21	symptom scores	helping to relieve	
(/		records		symptoms. Men's quality of	
		two non-	(2) Quality of	life may be also improved	
		randomized: 6	life	similarly. We are very	
		records)		uncertain about differences	
		among patients	(3) Major	in major unwanted effects.	
		with BPH needing	adverse events		
		treatment.		PAE likely increases the	
			Comparisons:	need for being treated	
		Selection criteria:	(1) PAE vs. sham	again for the same	
		(1) Men over the	control (or no	problem. PAE may work	
		age of 40 years	intervention)	similarly with regard to	
				erection problems, but may	
		(2) prostate	(2) PAE vs. TURP	reduce problems with	
		volume of 20 mL or		ejaculation	
		greater	(3) PAE vs. laser		
			ablation of the	Compared to TURP and	
		(3) LUTS as	prostate	based on short-term and	
		determined by an		long-term follow-up, the	
		IPSS of 8 or over,	(4) PAE vs laser	impact on <u>urologic</u>	
			enucleation of	symptoms and quality of	
		(4) Qmax less than	the prostate.	life improvement as	
		15 mL/second, as		perceived by patients	

		measured by non-	(5) PAE versus	appears to be similar. This	
		invasive	other minimally	review did reveal major	
		uroflowmetry,	invasive	uncertainty as to how	
		invasive pressure	therapies.	major adverse events	
		flow studies, or	•	compare. Prostatic arterial	
		both		embolization (PAE) likely	
				increases retreatment	
				rates. PAE may have similar	
				effects on erectile function.	
Article 6:	Randomized	Authors conducted	Primary	A marked improvement of	Limitations
	Controlled	a randomized,	outcome	LUTS/BPH can be found 24	included
Abt D, et al.	Trial	open-label trial to	included patient	mo after PAE, and the	how many
(2021)		compare PAE	reported scores	procedure is associated	participants
. ,		versus TURP	that were the	with fewer adverse events	refused to
		among 103	change from	than TURP.	undergo invasive
		participants aged	baseline to 3 mo		urodynamic
		40 years or older	in the IPSS	Improvements of subjective	assessment at 24
		, with refractory	questionnaire	and objective outcomes are	mo, which
		, LUTS/BPH.	score.	superior after TURP, and	hampers the
		,		PAE does not represent a	informative
			Secondary	definitive treatment for a	value regarding
		Selection criteria:	outcomes	relevant proportion of	midterm
		(1) LUTS/BPH in	comprised	patients.	urodvnamic
		men aged > 40 vr	(1) maximum	'	, efficacy.
		0 /	urinary flow	Advantages of PAE in both	,
		(2) Indication of	rate (Omax)	subjective and objective	Authors correct
		TURP		outcome measures are	for multiple
			(2) postvoid	most likely to be caused by	testing as the
		(3) being refractory	residual (PVR)	the inferior relief of bladder	purpose of the
		to medical		outlet obstruction achieved	present analysis
		treatment or	(3) OoL of LUTS	by PAE.	was to identify
		unwilling to	(0) 40-01-010		any relevant
		undergo (further)	(4) Chronic		differences
		medical treatment.	Prostatitis		between the two
			Symptom Index		treatments in an
		(4) Prostate size of	(CPSI)		exploratory
		25-80	()		sense. Therefore
			(5) International		individual n
		(5) IPSS of at least 8	Index of Frectile		values must he
		(3)	Function Short		interpreted with
		(6) IPSS-related	Form 5 (IIEF)		due caution
		quality of life score			
		of at least 3	(6) prostate-		
			specific antigen		
		(7) Max urinary	(PSA)		
		flow rate of <12			
		ml/s or urinary	(7) adverse		
		retention	events		
		recention	EVENILS		

CONCLUSIONS:

Article 1:

Subjective symptom improvement was equivalent between TURP and PAE. While TURP demonstrated larger improvements for some objective parameters, PAE was associated with fewer AEs and shorter hospitalization times.

Article 2:

Reduction of LUTS in the PAE group was similar to that in the TURP group at 12 months, with fewer complications secondary to PAE. Long-term follow-up is needed to compare the durability of the symptomatic improvement from each procedure.

Article 3:

The improvement in lower urinary tract symptoms secondary to benign prostatic hyperplasia seen 12 weeks after PAE is close to that after TURP. PAE is associated with fewer complications than TURP but has disadvantages regarding functional outcomes, which should be considered when selecting patients. Article 4:

PAE is non-inferior to TURP with regard to improving patient-reported outcomes, though most functional parameters undergo more changes after TURP than after PAE. Moreover, PAE can significantly continue to relieve symptoms for 24 months without causing serious complications. Article 5:

Compared to TURP and based on short-term and long-term follow-up, the impact on urologic symptoms and quality of life improvement as perceived by patients appears to be similar. Prostatic arterial embolization (PAE) likely increases retreatment rates.

Article 6:

Inferior improvements in LUTS/BPO and a relevant re-treatment rate are found 2 years after PAE compared with TURP. A marked improvement of LUTS/BPO can be found 24 months after PAE, and the procedure is associated with fewer adverse events than TURP.

Overarching:

Benign prostatic hyperplasia is one of the most common diseases in men and is often associated with bladder outlet obstruction and lower urinary tract symptoms. TURP is still the surgical gold standard in most patients. However, it is associated with high morbidity, and 40% of patients have residual lower urinary tract symptoms that require drug treatment within five years after surgery. These drawbacks have led to a continuous search for less invasive treatments. Overall, the articles overarchingly concluded that PAE improves BPH symptoms just as well as TURP does.

CLINICAL BOTTOM LINE:

The clinical bottom line is <u>prostatic arterial embolization (PAE) is found to be a **comparable valuable** <u>**method** to TURP in the treatment of BPH.</u> All the articles presented were of high-quality evidence (2 systematic reviews and 2 RCTs), thereby providing the clinical implication that PAE should be considered a viable option in resolving lower urinary tract symptoms secondary to BPH. According to the presented research, advantages of PAE seem to be related to its minimally invasive nature, including relatively few complications and shorter hospital stays. However, given the limited available literature and safety concerns regarding radiation exposure, postembolization syndrome, vascular access, technical feasibility, and adverse events the American Urological Association (AUA) BPH clinical guidelines state that currently PAE should only be performed in the context of an experimental clinical trial. Therefore, TURP is still considered the gold standard for treatment of BPH. As shown in the data, TURP is superior to PAE in regard to functional outcomes such as maximum flow rate and PSA values. Overall, the evidence at hand is applicable to my clinical scenario. I would clinically recommend PAE to TURP in the</u> treatment to improve BPH symptoms because there is an overwhelming amount of evidence demonstrating patient favorability for the simpler procedure, PAE.

Weight of Evidence:

Article 1:

This 2021 meta-analysis and systematic review that examined the efficacy the outcomes of prostatic artery embolization to transurethral resection of the prostate for BPH treatment. This study inspected 6 studies with 598 patients and focused on 3 outcomes of interest which were maximum urinary flow rate, prostate volume, prostate-specific antigen. Overall, this article carries weight because it thoroughly discussed the significant differences in symptom improvement between TURP and PAE. Article 2:

This 2019 randomized controlled trial was chosen because it investigated the efficacy the outcomes of prostatic artery embolization to transurethral resection of the prostate for treatment of lower urinary tract symptoms related to BPH. The study was performed in a single center hospital in 2017 which included 45 patients. The group was randomized into receiving TURP or PAE. The authors assessed different outcomes which included maximum urinary flow rate and patient rated prostate symptoms, prostate volume, erectile function, blood tests for PSA, and many more. Overall, this article carries weight because it examined postoperative pulmonary function and complications with the use of incentive spirometry versus positive airway pressure intervention. Article 3:

This 2018 internationally performed randomized controlled trial was chosen because it compares PAE with TURP in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia in terms of patient reported and functional outcomes. It addresses the lack of high-quality evidence comparing PAE and TURP is a crucial knowledge gap in urology prior to this study. This RCT involved 103 patients aged ≥40 years with BPH. Overall, this article carries weight because it reflects my clinical scenario and demonstrated reliable comparative data that enhance the so far inconsistent and low-quality evidence available for PAE, and outlines its advantages and disadvantages compared with TURP. Article 4:

This 2020 meta-analysis and systemic review was selected because it is a comprehensive review examining 11 articles reporting PAE versus TURP for BPH. Outcomes of this study include Qmax, PVR, PV, PSA, quality of life, and Prostate Symptom Score. Additionally, the authors systematically performed a meta-analysis to review mean changes from baseline at selected follow-up intervals after the PAE procedure. Overall, this article carries weight because it is a meta-analysis for evaluating the clinical efficacy and safety of PAE vs. TURP in patients affected by LUTS-BPH. Article 5:

This 2022 meta-analysis from the Cochrane was selected since it evaluated the effects of PAE compared to other procedures for treatment of LUTS in men with BPH. As such, the evidence is certainly current. Compared to TURP and based on short-term and long-term follow-up, the impact on urologic symptoms and quality of life improvement as perceived by patients appears to be similar. Overall, this RCT carries weight because it is relevant to the target population and it determined the clinical efficacy of PAE versus TURP in the treatment of BPH.

Article 6:

This 2021 randomized controlled trial was selected because it evaluated the long-term efficacy of PAE and TURP at a 2 year follow up. A reduction of LUTS/BPO defined as "marked" previously is still found 24 months after PAE, and PAE is associated with significantly fewer adverse events than TURP. However, improvements of patient-reported outcomes and functional parameters are more pronounced after TURP. Overall, this RCT carries weight because it is relevant to the target population and it determined the clinical efficacy of PAE versus TURP in the treatment of BPH.

Magnitude of Any Effects:

Article 1:

The principal findings of this review were: (1) while TURP afforded significantly increased improvement compared to PAE in most objective BPH parameters assessed (Qmax, prostate volume, and PSA), equivalent results were observed between PAE and TURP in rates of subjective improvement in patient-reported symptoms; (2) PAE was associated with significantly fewer AEs compared to TURP; and (3) PAE was associated with increased procedural time but decreased hospitalization time compared to TURP. Article 2:

The PAE group showed similar results to the TURP group in terms of clinical results and QoL, presenting fewer adverse events compared with the surgery. This clinical trial adds to the evidence that PAE is an effective and safe technique in the treatment of LUTS secondary to BPH, with clinical out- comes comparable to TURP. Satisfaction and pain at 24 hours are related to the procedure itself, and PAE patients reported less pain and higher satisfaction than those in the TURP group. Article 3:

All 48 patients receiving PAE and 51 patients receiving TURP were available for the 12-week follow-up visit that included the primary outcome assessment. The mean change in IPSS from baseline to 12 weeks was –9.23 points after PAE and –10.77 points after TURP, and the difference of 1.54 points in favor of TURP was not significant. By contrast, functional outcomes after 12 weeks were clearly in favor of TURP. After PAE and TURP, we saw an improvement in maximum rates of free urinary flow by 5.19 mL/s versus 15.34 mL/s (difference 10.15 in favor of TURP.

Article 4:

The main finding of this systematic review was that PAE is non-inferior to TURP with respect to improving patient- reported outcomes, including IPSS, QoI, and IIEF-5 at 12 months. Nonetheless, for the improvement of most functional outcomes such as Qmax, PV, and PSA, TURP was superior to PAE. Indeed, the average improvement in IPSS ranged from – 16.33 to – 13.1 points during 24 months of follow-up. TURP and PVP have been shown to result in excellent improvements in IPSS up to 14.9 points at 12 months [2, 9, 28]. Therefore, combined with the literature, our meta- analysis demonstrated that PAE is as effective as TURP in improving patient-reported symptoms. Article 5:

Based on short-term data (up to 12 months' follow-up) from both RCTs and prospective comparative NRSs, PAE may result in a somewhat lesser but overall similar improvement in urologic symptom score and quality of life. For longer-term outcomes (greater than 12 months' follow-up), we found that urologic symptom score and quality of life may be similarly improved between these procedures. Article 6:

Disadvantages of PAE in both subjective and objective outcome measures are most likely to be caused by the inferior relief of bladder outlet obstruction achieved by PAE. A substantial number of patients (21%) require a step-up towards more invasive treatment within 24 months after PAE due to unsatisfying clinical outcomes.

Clinical Significance:

BPH is one of the most common diseases in men and is often associated with bladder outlet obstruction and lower urinary tract symptoms. The incidence of benign prostatic hyperplasia in men aged 50-60 years is 50% and rises with increasing age. Surgical treatment is recommended if conservative treatment fails or for patients with complications related to BPH. <u>Transurethral resection of the prostate (TURP) is</u> <u>still the surgical gold standard in most patients</u>. However, it is associated with high morbidity and 40% of patients have residual lower urinary tract symptoms that require drug treatment within five years after surgery. These drawbacks have led to a continuous search for less invasive treatments. Prostatic artery embolization (PAE) is emerging globally as a minimally invasive alternative to surgical therapy for the treatment of bladder outlet obstruction caused by BPH. Overall, current literature <u>shows there is not</u> <u>enough rigorous evaluation to exhibit the preference of PAE or TURP in the treatment of BPH</u>. Most research demonstrates that <u>PAE is as effective as TURP in improving patient-reported symptoms</u>. Collective data has shown one apprehension for the use of PAE, in which PAE likely increases retreatment rates compared to TURP. According to the American Urological Association (AUA) BPH clinical guidelines state that currently PAE should only be performed in the context of an experimental clinical trial, given the heterogeneity in the available literature and safety concerns regarding radiation exposure, postembolization syndrome, vascular access, technical feasibility, and adverse events. The evidence gathered here should warrant future implications for PAE because this procedure impacts the entire prostate without exerting any focused and controlled action on the obstruction. In any case, the decision to offer PAE treatment should be based on a multidimensional risk-benefit assessment and a detailed discussion with the patient regarding the adverse effects that are associated. <u>Other Considerations:</u>

Further research should conduct rigorous studies to assess the true benefits of PAE in the treatment of BPH with standardized PAE procedures, longer follow-up periods, and cost-effectiveness analyses. Current literature should also employ more higher quality articles to include more randomized controlled trials with larger populations.

impacts the entire prostate without exerting any focused and controlled action on the obstruction